Table 8

SOUTH DAKOTA
Offenses Known to Law Enforcement
by State by City, 2008
City Population Violent
crime
Murder and
nonnegligent
manslaughter
Forcible
rape
Robbery Aggravated
assault
Property
crime
Burglary Larceny-
theft
Motor
vehicle
theft
Arson1
Aberdeen 24,382 45 0 19 3 23 503 91 389 23 7
Armour 659 2 0 2 0 0 5 4 1 0 0
Avon 518 0 0 0 0 0 0 0 0 0 0
Belle Fourche 4,926 11 0 2 0 9 60 15 42 3 1
Bonesteel 253 0 0 0 0 0 0 0 0 0 0
Box Elder 3,312 7 0 2 1 4 83 11 67 5 0
Brandon 7,445 2 0 0 0 2 51 2 49 0 0
Brookings 19,546 10 0 6 0 4 248 23 211 14 0
Burke 565 0 0 0 0 0 0 0 0 0 0
Canton 4,275 4 0 2 0 2 41 8 30 3 1
Centerville 843 1 0 0 0 1 0 0 0 0 0
Chamberlain 2,249 12 0 1 0 11 37 7 24 6 1
Deadwood 1,283 0 0 0 0 0 48 2 38 8 0
Delmont 216 0 0 0 0 0 0 0 0 0 0
Eagle Butte 953 0 0 0 0 0 14 4 10 0 0
Estelline 662 0 0 0 0 0 8 1 7 0 0
Eureka 927 0 0 0 0 0 0 0 0 0 0
Freeman 1,182 0 0 0 0 0 0 0 0 0 0
Gettysburg 1,061 1 0 0 0 1 7 2 5 0 0
Hermosa 355 0 0 0 0 0 0 0 0 0 0
Hot Springs 4,040 2 0 0 0 2 49 19 29 1 0
Hoven 395 0 0 0 0 0 0 0 0 0 0
Irene 401 0 0 0 0 0 2 1 1 0 0
Jefferson 596 0 0 0 0 0 1 0 1 0 0
Kadoka 647 1 0 0 0 1 2 0 2 0 0
Kimball 682 0 0 0 0 0 0 0 0 0 0
Lead 2,874 1 0 0 0 1 12 3 9 0 0
Lemmon 1,167 2 0 1 0 1 11 4 6 1 0
Lennox 2,846 3 0 0 0 3 7 1 6 0 0
Leola 382 0 0 0 0 0 0 0 0 0 0
Madison 6,294 2 0 0 0 2 107 14 91 2 0
Martin 1,002 4 0 0 0 4 3 2 1 0 0
McIntosh 208 0 0 0 0 0 0 0 0 0 0
Menno 664 0 0 0 0 0 0 0 0 0 0
Mitchell 14,861 35 0 7 2 26 476 59 397 20 8
Mobridge 3,086 5 0 1 0 4 74 9 63 2 0
New Effington 224 0 0 0 0 0 0 0 0 0 0
North Sioux City 2,549 4 0 0 0 4 45 1 44 0 0
Parkston 1,489 0 0 0 0 0 3 0 3 0 0
Pierre 14,051 46 0 14 3 29 527 83 389 55 5
Rapid City 64,556 346 2 73 50 221 2,572 392 2,035 145 22
Rosholt 428 0 0 0 0 0 0 0 0 0 0
Scotland 792 0 0 0 0 0 0 0 0 0 0
Sioux Falls 155,110 522 5 130 46 341 3,937 659 3,030 248 38
Sisseton 2,447 9 0 1 0 8 16 1 12 3 0
Spearfish 10,144 12 2 8 0 2 283 66 203 14 0
Springfield 1,490 0 0 0 0 0 0 0 0 0 0
Sturgis 5,937 10 0 1 0 9 144 23 116 5 0
Summerset 451 0 0 0 0 0 0 0 0 0 0
Tripp 633 0 0 0 0 0 0 0 0 0 0
Tyndall 1,103 0 0 0 0 0 0 0 0 0 0
Vermillion 10,251 7 0 0 1 6 112 15 92 5 2
Viborg 771 3 0 0 0 3 1 1 0 0 0
Wagner 1,545 1 0 1 0 0 1 1 0 0 0
Watertown 20,565 35 0 17 0 18 579 71 462 46 8
Wilmot 512 0 0 0 0 0 0 0 0 0 0
Winner 2,768 5 0 0 0 5 31 4 24 3 0
Yankton2 13,660 18 1 4 1 12 357 60 285 12 0

Back to Top

Data Declaration

Provides the methodology used in constructing this table and other pertinent information about this table.